While syncing your sales orders, customers, products, or Accounting Rules on your RevRec site via third-party systems and bulk import, RevRec processes the data through multiple layers of control and validation checks to identify any errors or discrepancies. This document walks you through the different types of errors or warnings that RevRec looks for and reports during the validation process and how you can resolve them.
RevRec processes data in three stages, and applies validation rules for each stage to identify issues.
Process Stage |
Error Reported |
---|---|
1: Download data from integrated 3rd party source systems | Data Sync Error - issues in the download process and preliminary data integrity check. |
2: Upload the data into RevRec | Data Input Validation Error - issues identified in RevRec specific data rule checks. |
3: Process data for revenue recognition | Data Processing Error - issues identified during the revenue recognition process. |
Depending on the severity of the data error, RevRec throws errors or warnings for different use cases.
Errors: In case of errors, RevRec will not process the data unless the respective errors are resolved. For example, when a data sync error occurs, RevRec will not process the data unless you update the data in your source system.
Warnings: For less severe issues, RevRec will still apply default rules and continue to process. For example, when a user-provided customer doesn't exist in your RevRec site, RevRec displays a warning and auto-creates the customer.
Identify and fix any data errors in your RevRec site before closing your books by following these steps:
When you have integrated your RevRec site with different source systems for data input (for example, your sales orders are synced from Salesforce and your invoices are synced from Xero), RevRec compares the data that gets synced from these different systems and alerts you when they don't reconcile. The system identifies any issues encountered during the auto-sync between RevRec and source systems by comparing the source data already saved in RevRec with what is getting synced via the download.
Let's consider for example that you use Salesforce CRM system and Xero as your invoicing system. You first run a sync job with Salesforce to sync all your sale orders and then run a sync job with Xero to sync invoices for the customers. During the data sync, RevRec finds that there are some invoices in Xero and the corresponding customer records do not exist in Salesforce. These invoices with the missing customers are logged as Data Sync Errors by RevRec, however the data population is not terminated.
Data sync errors can be resolved by updating the data in your source systems.
For the above example, if you enable the setting to Use Customer Name Mapping while integrating your Chargebee site with Xero or any billing system, RevRec checks and maps your invoices with customer names that are synced from the CRM system. Invoices or credit notes created for a customer whose name doesn't match with any customer records are tracked as Pending Data.
Once you add or update the customer details in your CRM system and sync the data again, RevRec validates the data and no errors will be logged against the new job.
When you upload data in RevRec through file upload or when you run a sync job for any integrated source system, RevRec applies certain data rules to validate the data that is being uploaded. If the data is found to be inconsistent with the data requirements for processing, RevRec logs them as a Data Input Validation error.
For example, a missing customer-id against the contract or a missing invoice date. The system cannot process the contract information until the data is provided.
Data input validation errors can be resolved by updating the erroneous data in its source as follows:
Once you have resolved the issues and uploaded/synced the data again, RevRec will validate and process the data.
Data that is uploaded or synced into RevRec gets processed for revenue recognition based on the revenue rules, expense rules, and other configurations that you set up. When RevRec fails to produce the output due to incorrect configuration or missing rules, the system identifies them as Data Processing Validation errors.
For example, data processing validation errors are thrown when
Resolution for data processing errors can be different for each processing error. For example, you can resolve a processing error related to missing rules by creating the accounting rules for the corresponding product. For sales orders with missing or incorect data, you can update the corresponding record with correct data from the RevRec UI. In both cases, remember to reprocess the sales order record so that the revenue recognition impact from the data change gets updated.
RevRec automatically removes the processing error from the job error report once it is resolved and no error will be found in the system.
Contact RevRec Support for more assistance with resolving errors on your RevRec site.
Follow the steps mentioned below to view the data sync, data input validation, or data processing validation errors on your RevRec site:
The Control reports and Job Errors reports can be used to verify data in your RevRec system, identify errors, and fix them.
You can use the following Control reports to look for a summary of data discrepancy in your RevRec site:
The Job Errors report provides the details for each data issue, so you can conduct research to provide the fixes. Additionally, it is a log that keeps track of all the data errors and warnings for each job processed in your RevRec site - for example, once an error is reported, the report will have it in the record for the original job always, even after the error is fixed through a new job process.
Note: The Job Errors page can also be accessed from the Sync page by clicking on the link appearing in the job summary.
In the Search section, you can use the following search filters to find relevant job errors:
In the Search Result section, errors and warnings are grouped by the source and an error count is reported for each error record. You can click the count to see the individual records that are impacted by the issue.